Colored Posets and Colored Quasisymmetric Functions
نویسنده
چکیده
The colored quasisymmetric functions, like the classic quasisymmetric functions, are known to form a Hopf algebra with a natural peak subalgebra. We show how these algebras arise as the image of the algebra of colored posets. To effect this approach we introduce colored analogs of P -partitions and enriched P -partitions. We also frame our results in terms of Aguiar, Bergeron, and Sottile’s theory of combinatorial Hopf algebras and its colored analog.
منابع مشابه
ar X iv : m at h / 06 10 98 4 v 1 [ m at h . C O ] 3 1 O ct 2 00 6 COLORED POSETS AND COLORED QUASISYMMETRIC FUNCTIONS
The colored quasisymmetric functions, like the classic quasisymmetric functions, are known to form a Hopf algebra with a natural peak subalgebra. We show how these algebras arise as the image of the algebra of colored posets. To effect this approach we introduce colored analogs of P -partitions and enriched P -partitions. We also frame our results in terms of Aguiar, Bergeron, and Sottile’s the...
متن کاملColored Trees and Noncommutative Symmetric Functions
Let CRF S denote the category of S-colored rooted forests, and HCRFS denote its Ringel-Hall algebra as introduced in [6]. We construct a homomorphism from a K+ 0 (CRF S)–graded version of the Hopf algebra of noncommutative symmetric functions to HCRFS . Dualizing, we obtain a homomorphism from the Connes-Kreimer Hopf algebra to a K+ 0 (CRF S)–graded version of the algebra of quasisymmetric func...
متن کاملFree Quasi-symmetric Functions of Arbitrary Level
We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products Γ ≀ Sn and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and park...
متن کاملPeak Quasisymmetric Functions and Eulerian Enumeration
Via duality of Hopf algebras, there is a direct association between peak quasisymmetric functions and enumeration of chains in Eulerian posets. We study this association explicitly, showing that the notion of cd-index, long studied in the context of convex polytopes and Eulerian posets, arises as the dual basis to a natural basis of peak quasisymmetric functions introduced by Stembridge. Thus E...
متن کاملFree quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
Abstract. We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ Sn and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf ...
متن کامل